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SI-P1. Further discussions on the accuracy of the model proposed in the main text

SI-P1.1. The case of NH3 and trimethylamine 

To further discuss the accuracy of our model (a detailed description of our model is shown below in part 

SI-P1.2), we would like to analyze a specific example involving NH3 and trimethylamine (TMA). According to our 

theoretical model, 10 parts-per-million (ppm) of ammonia should produce a similar change in conductivity to 

20 ppm of TMA, with a ratio of    ( :  change in conductivity produced by 10 ppm of NH3, :  
∆𝜎𝑁𝐻3

∆𝜎𝑇𝑀𝐴 = 1.16 ∆𝜎𝑁𝐻3 ∆𝜎𝑇𝑀𝐴

the change in conductivity produced by 20 ppm TMA). Our experimental results for PEGS in Fig. 2A indicate that 

the ratio of change in conductivity for NH3 and TMA is approx. 40 (  = 40). Hence, there is an order of 
∆𝐺𝑁𝐻3

∆𝐺𝑇𝑀𝐴 

magnitude mismatch between the calculated and experimental results for the concentrations mentioned above. 

To understand whether the deviation from the calculations were originating from the use of paper (and 

not just a body of bulk water), we have performed the following experiment: We printed two carbon electrodes 

on a polymer substrate (marking transparency), submerged into 3 mL of deionized water and measured the 

change in conductivity in the presence of 10 ppm of NH3 and 20 ppm of TMA (Fig. S11) and took their ratio (
∆𝐺𝑁𝐻3

∆𝐺𝑇𝑀𝐴 

). In contrast to the experimental results produced by PEGS, the experiments involving bulk water produced 

results similar to the theoretical estimations with . 
∆𝐺𝑁𝐻3

∆𝐺𝑇𝑀𝐴 = 1.25

These results suggest that water adsorbed in paper and bulk water behave slightly differently for the 

same gases. This is probably because of the following reasons:
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 There may be interactions between the gases and cellulose matrix. Such evidence is found in cellulosic 

fiber treatment called ‘mercerization’ where physical and chemical properties of the cellulose fibers are 

modified using an alkaline solution, including ammonia.1 These modifications may influence the ionic 

conductivity.

 The surface bound layer of water has slightly different chemical properties than free (bulk) water. 

 Structural changes of cellulose fibers have been reported when moisture content surpasses 3.5 wt%. The 

density of paper does not behave monotonically with increasing levels of humidity. This suggests variable 

spatial distribution, size and connectivity of water reservoirs within the network of cellulose fibers, hence 

solution models may not likely reflect the paper sensor.2
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SI-P1.2. A model for predicting ionic conductivity

Conductivity: 

  (1)𝜎 = 𝑛 × 𝑍𝑒 × 𝑢

: carrier concentration𝑛

: charge number * elementary charge𝑍𝑒

: carrier mobility𝑢

Additional conductivity due to dissociated ammonia:

(2)𝜎𝑁𝐻3 = 𝑒 × [𝑛𝑁𝐻 +
4 × 𝑢𝑁𝐻 +

4 + 𝑛𝑂𝐻 ― × 𝑢𝑂𝐻 ― ]

Henry’s solubility constant  ::𝒌𝜽
𝑯

(3)𝑘𝜃
𝐻 =

[𝑁𝐻3(𝑎𝑞)]
𝑝𝑁𝐻3

: partial pressure of ammonia𝑝𝑁𝐻3

Partial pressure 𝒑𝑵𝑯𝟑:

(4)
𝑝𝑁𝐻3

𝑝𝑇𝑜𝑡
=  

𝑉𝑁𝐻3

𝑉𝑇𝑜𝑡
         ⇒        𝑝𝑁𝐻3 = 𝑝𝑇𝑜𝑡 ×  

𝑉𝑁𝐻3

𝑉𝑇𝑜𝑡

Dissociation constant  :𝑲𝑩

(5)𝐾𝐵 =  
[𝑁𝐻 +

4 ][𝑂𝐻 ― ]
[𝑁𝐻3(𝑎𝑞)]

Assumption: 

Solve equation (3) and (5) for :[𝑁𝐻 +
4 ] = [𝑂𝐻 ― ] [𝑁𝐻3(𝑎𝑞)]

(6)[𝑁𝐻3(𝑎𝑞)] =
[𝑁𝐻 +

4 ]2

𝐾𝐵

and

(7) [𝑁𝐻3(𝑎𝑞)] =  𝐻𝑐𝑝 × 𝑝𝑁𝐻3

Use equation (6) and (7) to get the additional carrier concentration :[𝑁𝐻 +
4 ]
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(8)[𝑁𝐻 +
4 ] =  𝐾𝐵 × 𝐻𝑐𝑝 × 𝑝𝑁𝐻3 =  [𝑂𝐻 ― ] : =  𝑛𝑁𝐻 +

4 =  𝑛𝑂𝐻 ―  

Insert  into equation (2) to get the additional conductivity :[𝑁𝐻 +
4 ] 𝜎𝑁𝐻3

(9)𝜎𝑁𝐻3 = 𝑒 × 𝐾𝐵 × 𝐻𝑐𝑝 × 𝑝𝑁𝐻3 × [𝑢𝑁𝐻 +
4 + 𝑢𝑂𝐻 ― ]

Constants3,4

Dissociation constant:

Ammonia 𝐾𝐵 =  10 ―4.76 
𝑚𝑜𝑙

𝑙

Trimethylamine  𝐾𝐵 =  10 ―4.2 
𝑚𝑜𝑙

𝑙

Henry’s solubility constant:

Ammonia 𝐻𝑐𝑝 = 67.75 
𝑚𝑜𝑙

𝑙 × 𝑏𝑎𝑟

Trimethylamine 𝐻𝑐𝑝 =   9.50 
𝑚𝑜𝑙

𝑙 × 𝑏𝑎𝑟

Mobility:

Ammonium 𝑢𝑁𝐻 +
4 =  7.62 × 10 ―8 

𝑚2

𝑠 × 𝑉

Hydroxide 𝑢𝑂𝐻 ― =  20.64 × 10 ―8 
𝑚2

𝑠 × 𝑉

Trimethylammonium 𝑢𝑁𝐶3𝐻 +
10

=  3.56 × 10 ―8 
𝑚2

𝑠 × 𝑉

SI-P2. Data analysis of food spoilage experiments

We obtained our raw data from an Arduino DUE ADC port (10 bit) and scaled it to consider the different 

gain resistors we used in our transimpedance amplifying setup1. This gave us the data as shown in Fig. S6 A+B. 

We applied a moving average filter before we looked for local maxima or minima in our data. The red circles in 

Fig. S6 A+B indicate the position where the 1st derivative is zero. We chose these points as our conductance 

1 Gain scale vector: [1; 3.0551; 15.0739; 494.4227]
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reference value (G0) to normalize each sensor individually. These turning points show where the sensor started 

reaching equilibrium with the container’s atmosphere. This means, external factors (e.g. added water, 

temperature) do not influence the sensors anymore. We normalized the data by subtracting and dividing by the 

reference value ([G-G0]/G0 = ΔG/G0). This gave data that indicated the change of the conductance over time in 

relation to a reference value (Fig. S6 C+D). We then normalized the response to 100g per sample. In this case the 

raw data was for 40g cod fish (Fig. S6 A) and 20g chicken breast (Fig. S6 B) respectively. Averaging over the four 

sensors in the containers with food samples and the two sensors in the water (control) boxes, gave us the data 

presented in Fig. 5 in the main text.

SI-P3. Comparison with state-of-the-art electronic nose

To better frame the effectiveness of the proposed paper sensors within state-of-the-art technologies, we 

tested metal oxide (MOX) gas sensors in parallel with paper sensors to track the degradation of cod over time. 

We chose MOX sensors because of their well-established sensing capability, which has been widely 

demonstrated in a variety of applications.5,6 

The experimental setup was the same as used for the food experiment with the paper gas sensor. We kept 

the MOX device inside a container (180 mL) together with two paper-based sensors. Both technologies were 

tested under the same conditions and against the same target. 

Since MOX are non-specific sensors, i.e. they respond to a broad range of chemicals, the electrical resistance of a 

single MOX device is not suitable to track the target in complex atmospheres, such as those developed by 

decomposing food. These MOX sensors were, therefore, exploited in a sensor array configuration (so called 

“electronic nose”). We applied temperature modulation protocols to achieve the desired selectivity and the 

sensor response is depicted as a Principal Component (PC) plot in Fig. S7.7 The sensor’s response was acquired 

every 20 seconds and each data point corresponds to a single measurement. For simplicity, a set of 20 data points 

acquired every 6 hours in a frame of 400 seconds is plotted. This data formed six different clusters. From the 

clusters’ arrangement it is possible to observe a trend that is representative to the cod degradation and the 
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capability of MOX sensors to track it. It can be observed that clusters are well separated for the first 18 hours. 

The distance between consecutive clusters diminished over time until the clusters were almost overlapping after 

18 hours. This indicates the capability of the MOX device to distinguish among the different degradation degrees 

during the initial stages and shows that the performance of the MOX sensors suffers as the spoilage gas 

concentration increases. This may be reasonably ascribed to saturation effects.8 This saturation occurs when the 

total microbial concentration value is around 108-109 CFU/g (colony forming units per gram), according to the 

microbial control experiment.

Methods for metal oxide sensors: We used a commercial platform (Minimox from JLM Innovation GmbH) 

equipped with two micromachined MOX sensors: TGS8100 (Figaro) and CSS801 (CCMOSS). We applied a square 

wave to the sensor heaters, to give a warm period of 10 seconds at voltage Vheater = 2.31 V and a cold period of 10 

seconds with Vheater = 1.65 V. We measured the sensor resistance with a sampling rate of 40 samples/s. 

Since the resistance value of a single MOX gas sensor is unsuitable to track the complex processes underlying 

food spoilage, the response of MOX sensors is retrieved by periodically warming and cooling the sensors through 

the embedded heater. This activates and freezes the interaction between gaseous molecules and the metal oxide 

surface, producing a resistance vs. time curve.9 

In this work, the two metal oxide gas sensors were excited according to the same protocol: We applied a 

square wave of period 20 seconds, duty cycle 50% and voltage values of 2.31 V and 1.65 V. Fig. S14 shows the 

resistance over one wave cycle of the CSS801 sensor measured during cod spoilage experiments at the beginning 

of the experiment (Fig. S14 A) and after 24 hours (Fig. S14 B). The resistance increased during the cold period 

and decreased during the warm period. The curves differ in terms of amplitude and shape, which reflects the 

different composition of the gas phase developed by fish over time. To characterize the shape of these curves, we 

used the following parameters:

 ΔRcold-hot is the resistance variation between the cold and the hot period. More precisely, it is calculated as 

the difference between the sensor resistance measured at the end of the cold period and the resistance 

measured at the start of the warm period after 0.2 seconds.
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 ΔRcold is the resistance variation within the cold period. It is calculated as the difference between the 

sensor resistance measured at the end of the cold period and the resistance measured at the beginning 

(after 0.2 seconds) of the same period.

We calculated these for each sensor and used a principal component analysis algorithm (PCA-function of 

MATLAB) on the data.
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Figure S1. The weight percentage change (ΔW/W0) of paper at different RH levels compared to the paper weight 

at 0% RH (n = 3).
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Figure S2. Operational amplifier-based transimpedance amplifier which converts the current passing through 

the sensor to a voltage. The sinusoidal signal is applied at Vin and current through the sensor (Iin) is converted to 

a voltage (Vout) with a certain ratio, depending on the gain resistor (Rgain). The input current is amplified 

according to:

.𝑽𝒐𝒖𝒕 =  ―  𝑹𝒈𝒂𝒊𝒏 ×  𝑰𝒊𝒏

The circuit schematics for the entire read-out device are shown in Fig. S12 and S13 in detail.
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Figure S3. The average electrical response of the PEGS to ammonia gas concentrations from 0.2 ppm to 10 ppm. 

Sensor response exhibited non-linearity at lower concentrations.
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Figure S4. Admittance of the paper gas sensor over the RH range from 0-100 % at a frequency of 20 Hz. The 

error bars show the standard deviation (n=3).
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Figure S5. The three containers used for the fish and poultry monitoring experiments. One box contains water as 

a control and two boxes contain the meat (either cod fish fillet or chicken breast). Each container includes two 

paper sensors that are plugged into a card edge connector on the lid and a HIH-5030 type commercial humidity 

sensor.
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Figure S6. Raw data of the food monitoring experiments. (A) Signal of paper gas sensors in three different 

containers inside a fridge, two containing a cod fish sample (40g) and one box containing water only. We chose 

the point where the 1st derivative became zero to be the reference conductance value (G0) for each sensor (red 

circles). (B) The corresponding data for a chicken sample (20g) at room temperature. (C) We subtracted and 

divided the data from (A) by its reference point (1st derivative = 0). This achieved normalized data indicating a 

change in conductance in percentage (%) compared to the reference value. In a last step we normalized to a fish 

sample of 100g to achieve our final plot (Fig. 5). (D) Corresponding data for chicken. For the control sensor 

signal we additionally used a moving average filter (n=200) before we normalized the data.
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Figure S7. Principal component plot of the MOX sensor response to the volatile gases developed by a cod sample 

in the same setup as Fig. 5. The sensor response is plotted at five different times (t = 0 h to t = 24 h). The 

distribution of the data points is a function of volatile gases developing over time because of fish spoilage. 

Separation among the clusters shows the capability of the MOX technology to discriminate among different 

spoilage levels. Saturation effects (reduced cluster separation with increasing time) are visible after 18 hours.
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Figure S8. The response of PEGS (solid black) and commercial relative humidity sensor (dashed red) to an 

atmosphere of 4 wt% acetone in water. Exposure time (shaded band) and purge time were 20 min and 60 min, 

respectively. The water-miscible acetone vapor produces a complex response in both PEGS and the commercial 

relative humidity sensor. Although we do not know the exact origin of this behavior, it is probably due to a 

change in surface tension of the adsorbed layer of water on both devices when the acetone vapor mixes with the 

liquid water on the surface. This phenomenon will be a topic of a future study. 
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Figure S9. Optical photography of the carbon ink electrodes and their dimensions for sensor characterization 

(left) and food (right) experiments.
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Figure S10. Setup for the sensor characterization experiment. One part of the nitrogen flow bubbles through 

water and gets humidified (blue circles). The test gas (red circles) is mixed with the dry and humidified nitrogen. 

The mixing ratio is highly controllable using mass flow controllers (MFCs) to achieve the desired RH and test gas 

concentration inside the PTFE box containing the sensors. The range of the different MFCs is indicated in 

standard cubic centimeters per minute (sccm). The sensor signal is amplified and processed on a homemade 

read-out device and plotted on a computer.
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Figure S11. The signal response of two carbon electrodes in bulk deionized water: 

(A) to 10 ppm ammonia over ca. 60 min (n=2); 

(B) to 20 ppm TMA over ca. 60 min (n=2).  

The blue bands show when the test gas (NH3 or TMA) was present.


